Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein.

نویسندگان

  • Benoît Meslin
  • Céline Barnadas
  • Vanessa Boni
  • Christine Latour
  • Frédérique De Monbrison
  • Karine Kaiser
  • Stéphane Picot
چکیده

The ability to undergo apoptosis, previously thought to be exclusive to multicellular organisms, has been demonstrated in unicellular parasites. On the basis of an observation that Plasmodium "crisis forms" were seen in vitro after cultivation in media containing an antimalarial drug, we attempted to determine whether Plasmodium falciparum has the ability to undergo apoptosis. By use of either the apoptosis-inducer etoposide or the antimalarial chloroquine, apoptosis in Plasmodium asexual stages was evident by the observation of DNA fragmentation and disruption of transmembrane mitochondrial potential. Next, we sought to determine whether Plasmodium produces specific cysteine proteases that can induce apoptosis. We hypothesized that the 2 metacaspase-like proteins present in the Plasmodium genome contained features typical of downstream execution steps and upstream signaling pathways such caspase activation and domain recruitment. We report that one of the metacaspase genes, PF13_0289, in addition to a universally conserved catalytic cysteine and histidine dyad required for catalysis activity, contains a putative caspase recruitment domain in the N-terminal amino acid sequence. This putative P. falciparum metacaspase protein has been designated PfMCA1. Our findings offer important insights into parasite survival strategies that could open new ways for therapeutic alternatives to drug resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium falciparum Erythrocytic Stage Parasites Require the Putative Autophagy Protein PfAtg7 for Normal Growth

Analysis of the Plasmodium falciparum genome reveals a limited number of putative autophagy genes, specifically the four genes involved in ATG8 lipidation, an essential step in formation of autophagosomes. In yeast, Atg8 lipidation requires the E1-type ligase Atg7, an E2-type ligase Atg3, and a cysteine protease Atg4. These four putative P. falciparum ATG (PfATG) genes are transcribed during th...

متن کامل

Hemozoin Enhances Maturation of Murine Bone Marrow Derived Macrophages and Myeloid Dendritic Cells

Background: Falciparum malaria is a severe health burden worldwide. Antigen presenting cells are reported to be affected by erythrocytic stage of the parasite. Malarial hemozoin (HZ), a metabolite of malaria parasite, has adjuvant properties and may play a role in the induction of immune response against the parasite. Objective: To determine the immunological impact of hemozoin on the capacity ...

متن کامل

Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran

Abstract       Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...

متن کامل

The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium falciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites.

A 42-kDa fragment from the C terminus of major merozoite surface protein 1 (MSP1) is among the leading malaria vaccine candidates that target infection by asexual erythrocytic-stage malaria parasites. The MSP1(42) gene fragment from the Vietnam-Oak Knoll (FVO) strain of Plasmodium falciparum was expressed as a soluble protein in Escherichia coli and purified according to good manufacturing prac...

متن کامل

A sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmentally regulated protein-DNA interactions.

The Plasmodium falciparum gene encoding the knob associated histidine-rich protein (KAHRP) is shown to be transcriptionally regulated during its expression in the intraerythrocytic cycle as demonstrated by stage specific nuclear run-on analysis. The genomic organization of the KAHRP gene was determined and the structural basis for the stage specific transcription investigated. A sequence motif ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of infectious diseases

دوره 195 12  شماره 

صفحات  -

تاریخ انتشار 2007